Package: MTest 1.0.1

MTest: A Procedure for Multicollinearity Testing using Bootstrap

Functions for detecting multicollinearity. This test gives statistical support to two of the most famous methods for detecting multicollinearity in applied work: Klein’s rule and Variance Inflation Factor (VIF). See the URL for the papers associated with this package, as for instance, Morales-Oñate and Morales-Oñate (2015) <doi:10.33333/rp.vol51n2.05>.

Authors:Víctor Morales-Oñate [aut, cre], Bolívar Morales-Oñate [aut]

MTest_1.0.1.tar.gz
MTest_1.0.1.zip(r-4.5)MTest_1.0.1.zip(r-4.4)MTest_1.0.1.zip(r-4.3)
MTest_1.0.1.tgz(r-4.4-any)MTest_1.0.1.tgz(r-4.3-any)
MTest_1.0.1.tar.gz(r-4.5-noble)MTest_1.0.1.tar.gz(r-4.4-noble)
MTest_1.0.1.tgz(r-4.4-emscripten)MTest_1.0.1.tgz(r-4.3-emscripten)
MTest.pdf |MTest.html
MTest/json (API)

# Install 'MTest' in R:
install.packages('MTest', repos = c('https://vmoprojs.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/vmoprojs/mtest/issues

Datasets:

On CRAN:

2.70 score 1 stars 3 scripts 124 downloads 2 exports 60 dependencies

Last updated 1 years agofrom:d120e86db3. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 29 2024
R-4.5-winOKOct 29 2024
R-4.5-linuxOKOct 29 2024
R-4.4-winOKOct 29 2024
R-4.4-macOKOct 29 2024
R-4.3-winOKOct 29 2024
R-4.3-macOKOct 29 2024

Exports:MTestpairwiseKStest

Dependencies:abindbackportsbootbroomcarcarDataclicolorspacecowplotcpp11DerivdoBydplyrfansifarverFormulagenericsggplot2gluegtableisobandlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpurrrquantregR6RColorBrewerRcppRcppEigenrlangscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr